Energy Deposition: How much beam do we really need?

- Numbers from Mikhail suggest for 8 GeV
 - We need 1.2 mA into 1 cm² at 750 keV or
 Mikhail does not
 - 0.94 mA into 1 cm diameter aperture

At 750 keV
Mikhail does not believe MARS

- To match 1 Gev, Brookhaven used
 - 2 mA of H- into 3 mm diameter aperture at 750 keV or
 - 22.2 mA into 1 cm diameter
 - Scaling linearly to 8 Gev (as a crude estimate!) we need:
 - 16 mA into 3 mm diameter at 750 keV or
 - This is may be doable??
 - 178 mA into 1 cm diameter
 - This is not doable!
- What we can do in the 750 keV line
 - I have roughly measured the beam spot at one location in the 750 line by burning a Kapton foil
 - Approximately 60 mA into 1 cm diameter or
 - 0.6 mA into 1 mm diameter or
 - 5.4 mA into 3 mm diameter

Possible Locations for Diamond Foil Test: Doug Moehs 2/23/04

Comments

- If the intensity is smaller as Mikhail suggests
 - Putting a 1 mm diameter aperture into the beam is viable
 - Measure toroid current down stream to get accurate current density
- If the intensity we need is high
 - We need to get a good current density measurement
 - This requires a way of measuring the beam spot at 750 keV.
 - Needs to be developed.
 - Additional Options
 - We can run at higher currents up to 80 mA
 - this may increase the H⁻ on target by as much as 33% but the beam spot probable changes so the density changes
 - We can run at a slightly higher energy, up to 770 keV
 - In this range the energy deposition goes up energy.
 - We can make the beam pulse longer, up to 90-100us long
 - We can maximize the focusing of the quads
 - IN DESPERATION: We might be able to increase the repetition rate
 - This increases the beam on target per unit time.

Faraday Cup Array Used on the test bench

We would need to miniaturize this design in order to look at the 1-2 cm diameter beam spot